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ABSTRACT—What are young children’s first intuitions

about numbers and what role do these play in their later

understanding of mathematics? Traditionally, number has

been viewed as a culturally derived breakthrough occur-

ring relatively recently in human history that requires

years of education to master. Contrary to this view,

research in cognitive development indicates that our

minds come equipped with a rich and flexible sense of

number—the approximate number system (ANS).

Recently, several major challenges have been mounted to

the existence of the ANS and its value as a domain-speci-

fic system for representing number. In this article, we

review five questions related to the ANS (what, who, why,

where, and how) to argue that the ANS is defined by key

behavioral and neural signatures, operates independently

from nonnumeric dimensions such as time and space, and

is used for a variety of functions (including formal mathe-

matics) throughout life. We identify research questions

that help elucidate the nature of the ANS and the role it

plays in shaping children’s earliest understanding of the

world around them.
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Numbers dominate children’s lives, from knowing how old they

are to deciding who has more toys. What intuitions, if any, do

young children have about numbers, and what role do these

intuitions play as children develop and learn about the world?

In this article, we argue that well before they enter school or

even hear a single number word, children have an intuitive,

abstract, and flexible sense of number—an approximate number

system (ANS). We synthesize current research by exploring five

questions related to the ANS: What is the ANS? Who has access

to the system? Why does it exist? Where in the brain is it local-

ized? And how can it be used for formal mathematics? In each

section, we highlight our understanding of the ANS as a phylo-

genetically ancient system used actively throughout life. We also

identify challenges and questions that researchers are investigat-

ing in neuroscience as well as in cognitive, developmental, com-

parative, and computational psychology. And we argue that the

ANS is a specialized, domain-specific system for representing

number.

WHAT IS THE ANS?

Consider coming home from a concert and being asked to esti-

mate how many people attended. Each of us could easily, albeit

approximately, answer this question, as well as several related

ones: Was it the largest concert you attended? Could another 50

people have fit inside the venue? Were there more men or

women? Our estimates of this kind are necessarily imprecise,

but they are possible: When presented with a visual or auditory

stimulus, we automatically and efficiently extract the approxi-

mate number of items in a scene (1, 2). In turn and in coordina-

tion with other cognitive systems (as shown in Figure 1),

representations of the ANS can be divided into subgroups (3),

manipulated arithmetically (4), compared (5), and—with the

help of language—estimated with number words like fifty-three

(6).

The ANS is not the only way our minds represent number:

Small collections of objects can be enumerated precisely, but

with a firm capacity limit (1), objects can be counted precisely

(6), and negative and imaginary numbers are understood con-

ceptually without any apparent use of the ANS (2), and so forth.

But when the ANS is used, it manifests itself through two behav-

ioral signatures (see Figure 2). First, as the number of presented
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items grows, estimates become more variable: The variability in

estimating 100 items is scalar, that is, about twice as large as

the variability in estimating 50 (7). Second, when deciding

which of two sets is larger numerically, performance is ratio-

dependent: Distinguishing 50 dots from 40 dots is significantly

harder than distinguishing 50 dots from 25 dots (1). Individual

and developmental differences in the ANS are most often cap-

tured as Weber fractions (w), which correspond roughly to the

smallest, and therefore most difficult, ratio that can be discrimi-

nated reliably, but correspond more realistically to the underly-

ing noise in the tuning curves that neurophysiologically

instantiate the ANS (8, 9). Together, these signatures suggest

that the ANS represents numbers as noisy Gaussian curves

along an ordered mental number line. Other number representa-

tions, such as counting, have distinct signatures (e.g., binomial

variability; 7), allowing researchers to identify distinct number

representations by monitoring for scalar variability and ratio

dependence.

Individual and developmental differences in ANS perfor-

mance are usually tested by briefly flashing sets of dots (or play-

ing a sequential series of tones) quickly enough that they cannot

be counted. Participants are then asked to compare that stimu-

lus to another set of dots presented simultaneously or concur-

rently, or to a particular number word. Infants are usually tested

through habituation to a particular number of dots, or by prefer-

ential looking to one of two streams of dots, with one constant

and the other varying in number. In more complicated para-

digms, sets of dots can be hidden and then manipulated (e.g., by

subtracting objects or adding new ones; Figure 1). Each individ-

ual’s ANS acuity can then be measured by examining the most

difficult ratio that can be discriminated successfully (see 5 for

details on models that accomplish this).

WHO HAS ACCESS TO THE ANS? WHEN DOES IT

EMERGE?

If the ANS is one of many forms of number representations,

what sets it apart? Dozens of studies have highlighted that the

ANS acts as the first route by which we understand numbers,

and exists across cultures, ages, and species of animals. For

example, newborns spontaneously match the number of tones

they hear to the number of objects in front of them (10).

Figure 1. The six basic functions of the approximate number system (ANS), explored within a simple approximate addition task.
Note. Some functions (e.g., estimate, remember, compare) require coordination between the ANS and broader cognitive systems for language, memory,
attention, and so forth. [Color figure can be viewed at wileyonlinelibrary.com]
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Members of cultures without any number words show ratio

dependency when discriminating number (11). Newly hatched

baby chicks, without training, show ratio dependency when for-

aging for food among collections of objects (for a review of the

ANS’s behavioral and neural signatures across species, see 12).

Therefore, the ANS apparently has a long phylogenetic history.

The ANS develops even if typical sensory input is disrupted.

For example, congenitally deaf individuals growing up using

Nicaraguan Sign Language reason about number using the ANS

(13). Congenitally blind individuals also demonstrate ratio

dependence when discriminating sequences of tones based on

number, and further exhibit compensatory activity in early

visual cortices in ways that appear specific to number (14).

Despite the ubiquity of the ANS, the ANS is more precise in

some people than in others. For example, while a typical college

student can easily discriminate 25 dots from 22 dots, some can

distinguish 25 from 24, whereas others struggle to discriminate

25 from 15 (15). These individual differences emerge early in

development and stay relatively stable with age—precision at

6 months predicts precision in preschool (16). As is the case

with many cognitive traits, the sources of these individual differ-

ences are difficult to pinpoint. Genetic heritability of the ANS is

only moderate (17), and although experience with number words

and formal education improves ANS acuity (18), many other

unexplored factors likely also contribute to these individual dif-

ferences.

WHY DOWE HAVE AN ANS?

Researchers have debated whether humans need a specialized

system such as the ANS to perceive and represent number, or

whether we could simply infer numerical information from other

dimensions, such as density or area. In typical ANS dot displays

(as in Figures 1 and 2), as number varies within the arrays,

many other features necessarily covary as well. For example, if

the size of the dots remains constant, increasing the number of

dots will also increase the total cumulative area covered by the

dots, whereas if the area in which the dots are drawn remains

constant, the density of the dot array will increase. The natural

covariation of these features could allow individuals to select

the more numerous array without representing number, either by

using these dimensions in place of number or by combining and

averaging across many different dimensions to infer number

(19–21).
The ANS’s potential dependence on other magnitudes is

important because it questions the existence of and need for a

domain-specific number system, and because it carries implica-

tions for cognitive development: For example, if number is

inferred by learning its natural covariation with other dimen-

sions, infants and young children without sufficient learning

experiences should also lack an ANS. A full discussion of this

debate is not possible here. Instead, we argue that, for three rea-

sons, the ANS is best conceptualized as a domain-specific and

specialized system for number representations that is not

extracted or inferred from nonnumeric dimensions. (For informa-

tion on the opposing view, see 20, 21.)

First, studies examining the ANS across perceptual modalities

—for example, tasks in which participants must combine or

compare visual and auditory presentations of number—argue

against using nonnumeric cues during number perception.

Because vision and audition use drastically different perceptual

features to represent their respective inputs (e.g., spatial

Figure 2. The two signatures of the approximate number system. Left: scalar variability, the linearly increasing variability as the number of items
presented rises. Right: ratio dependency, the increasing accuracy and decreasing reaction time as the ratio of two numbers grows. [Color figure can be
viewed at wileyonlinelibrary.com]
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frequency vs. pitch), studying the ANS across perceptual modal-

ities bypasses shared encoding procedures and instead investi-

gates shared representations between number and other

dimensions. Consistent with a separation between the ANS and

nonnumerical representations, many studies support amodal

ANS representations. For example, neonates spontaneously

match visual and auditory presentations of number (10), and

children and adults can both compare and add approximate

numerosities across visual and auditory modalities with no

apparent cost to performance within modalities (22). Perhaps

most impressively, visually adapting participants to number

(e.g., asking participants to stare at a patch of dots for about

20 s) subsequently decreases their auditory number estimates

and vice versa (23). These results suggest that number represen-

tations are not a mere byproduct of representations of other non-

numerical features (for an alternative view, see 21). And

although this integration of auditory and visual signals likely

occurs at midrepresentational rather than early sensory levels

(21, 23), the finding that even newborns integrate these signals

suggests that early, domain-specific ANS representations auto-

matically bridge numerical information across diverse percep-

tual features and sensory modalities.

Our second argument involves congruency effects, the finding

that participants are slower and less accurate when the array

with more dots is incongruent with other nonnumerical dimen-

sions (e.g., the array with fewer dots has larger or denser dots

than the array with more dots), even when participants are

instructed to attend only to number. The interpretation of con-

gruency effects is a major topic of discussion in ANS research.

Many researchers have taken such effects as evidence that num-

ber perception is dependent on or domain-general with nonnu-

meric dimensions because congruency effects may stem from

participants actually using nonnumeric features, such as density

or area, to perceive number.

In contrast, we argue that congruency effects alone cannot

provide evidence for or against the separation between the

ANS and nonnumerical representations because such effects

can stem from many levels of processing. Congruency effects

in number tasks may simply be a byproduct of response com-

petition between the ANS and other perceptual representations,

such as density or area, rather than a product of the actual

use of nonnumeric features during number perception. For

example, consider that the classic Stroop Task, in which the

irrelevant but automatic reading of a word interferes with the

task of naming the word’s color, is not evidence for a unitary

process underlying color perception and reading, but instead

points to competition between two otherwise independent pro-

cesses. Similarly, the observation that participants select the

denser patch of dots does not necessitate that density is used

to perceive number, but instead that density and number may

compete for the same response. Indeed, neurophysiological evi-

dence suggests that interactions between numerical and nonnu-

merical representations vary as a function of task demands

and can reflect conflict at the level of both stimulus encoding

and response selection (24).

Finally, the influence of nonnumerical dimensions on numeri-

cal representations becomes clearer in experimental paradigms

that eliminate response conflicts. For example, monkeys,

preschoolers, and adults from both numerate and innumerate

societies spontaneously categorize stimuli based on number

rather than size (25). Because participants are not given explicit

instructions or time limits, this method enables them to focus on

whatever they find most salient while eliminating the potential

response conflicts inherent in speeded discrimination tasks.

Likewise, modeling techniques that parse the influence of

numerical and nonnumerical cues in numerical discrimination

tasks indicate that participants base their decisions primarily on

number, not other dimensions (26). Electrophysiological evi-

dence also suggests that areas early in the visual processing

stream are sensitive to changes in numerosity independent of

changes in other visual features, even under passive viewing

conditions in which participants do not attend or respond to

number (27). Finally, preverbal infants are not more sensitive to

changes in nonnumerical features than in number (28), and

developmental improvements in ANS acuity occur independent

of other dimensions, including area, density, length, and time

(5). Together, these findings suggest that the ANS has a critical

degree of independence from nonnumerical dimensions.

The debate on the role of nonnumerical dimensions in number

perception remains active and productive (19, 20). Although we

cannot discuss every study on the ANS’s dependence on other

magnitudes, any such theory must at least account for three

basic phenomena: Crossmodal effects suggest that ANS repre-

sentations persist even when divorced from a single sensory

modality, congruency effects alone cannot pinpoint the locus of

interaction between the ANS and nonnumerical dimensions, and

finally, spontaneous categorization and developmental work

strongly suggests an ontogenetic primacy of numerical represen-

tations. We propose that the natural covariation of numerical

and nonnumerical features may offer an efficient way to combine

redundant information across many perceptual cues to make

more optimal decisions about number, especially when numeri-

cal ratios are low or other cues are salient. In other words, con-

gruency effects likely demonstrate that the ANS—like other

representational systems—is very flexible and efficient, not that

it relies entirely on nonnumerical dimensions.

WHERE IN THE BRAIN IS THE ANS LOCALIZED?

Convergent findings across methods, species, and ages demon-

strate that the posterior parietal cortex, and the intraparietal sul-

cus (IPS) in particular, are integral for processing numerical

magnitudes (29). Neural activity in these regions exhibits the

same ratio-dependent hallmark of ANS representations that are

observed behaviorally, and ratio-dependent activity within the

IPS is found both when participants perform numerical tasks
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and when they passively view numerically changing stimuli

(30). Ratio dependence can also be seen at the level of single

neurons in monkeys trained to perform a numerical match-to-

sample task. Single-cell recordings from the IPS in these mon-

keys reveal populations of neurons that respond maximally to a

preferred numerical value, with the firing rate decreasing as the

presented value deviates from the preferred value (29).

Sensitivity to numerosity in the posterior parietal cortex

emerges early in human development, long before children learn

to count or begin formal schooling. For example, fluctuations in

blood flow as measured by functional near-infrared spectroscopy

indicate that activity in the right parietal cortex of 6-month-olds

is modulated by changes in the number of objects within an

array but not by changes in shape (31). Likewise, functional

magnetic resonance imaging demonstrates that activity in the

IPS of 4-year-olds responds to changes in number but not

changes in shape (32). In adults, regions in the parietal cortex

respond to numerical information regardless of whether it is pre-

sented as arrays of dots, Arabic digits, or auditory number words

(33). Children as young as 6 also have similarly abstract repre-

sentations of number within the IPS (34). Taken together, the

neuroimaging evidence suggests that the IPS supports amodal,

abstract representations of number. Furthermore, these number-

specific representations appear early in human development,

again demonstrating that the ANS develops prior to experience

with number words or formal math education.

HOW IS THE ANS USED?

Beginning with the seminal finding that ANS acuity in adoles-

cents correlates with their standardized math scores (35), in

many subsequent studies, individual differences in ANS acuity

correlate with achievement in symbolic math, even when con-

trolling for other factors, including intelligence, working mem-

ory, and vocabulary size (see 36 and 37 for meta-analyses,

including negative findings). In fact, ANS acuity in infancy—
thus, before the start of formal math education—predicts later

math achievement (16), suggesting a directional relation

between ANS acuity and symbolic math achievement.

However, some investigators contend that the correlation

between ANS acuity and symbolic mathematics reflects a rela-

tion between inhibitory control and symbolic math. According to

this view, inhibitory control is required to respond based on

number rather than nonnumerical features (e.g., area or density)

in incongruent trials. Indeed, in some studies, only performance

on incongruent trials correlates with math achievement (38).

However, in other studies, performance on both congruent and

incongruent trials correlates with math achievement (39). Fur-

thermore, when numerical acuity and selective attention to num-

ber are measured independently, only numerical acuity predicts

children’s symbolic math ability (40).

We do not claim that only the ANS predicts math achieve-

ment, nor that it is the strongest predictor, because many

cognitive and socioeconomic factors contribute to children’s

development in math (e.g., inhibitory control, visuospatial skills,

the home environment). Rather, we argue that the ANS is a

foundation on which symbolic number representations are con-

structed. For example, children with more precise ANS repre-

sentations may find it easier to master the meaning of number

words, which in turn may facilitate early arithmetic learning

(41). Later in life, the ANS may continue to influence mathemat-

ical thinking by supporting ordinal representations of the rela-

tions between numerical magnitudes (42) or serving as an online

error-detection system (43).

The ANS may also be an attractive target for interventions to

improve children’s math performance. For example, training

preschoolers and college students on approximate arithmetic

(e.g., as in Figure 1) improves their symbolic exact arithmetic

performance (44), potentially because of a functional overlap

between approximate and symbolic addition. Similarly, exercis-

ing the ANS or temporarily boosting children’s confidence in

their ANS acuity also improves performance on a subsequent

math test (45, 46). Although these studies are not without limita-

tions and more work is needed to test the scope and strength of

these effects (47), the findings provide preliminary evidence that

interventions targeting the ANS may help young children who

have not mastered symbolic digits by providing an alternative

avenue for them to practice the same types of mathematical

operations they will learn to perform symbolically.

CONCLUSIONS

The ANS is of broad interest to cognitive, developmental, com-

parative, and computational psychologists because it suggests

that the brain can automatically and efficiently represent one of

the most complex properties in the external world. Although

debates continue within the literature, we have argued that the

ANS’s characteristic signatures exist in most species of animals,

develop and function independently of nonnumerical dimen-

sions, have unique neural instantiations, and are used through-

out life, even before children enter formal schooling. In essence,

number—as represented by the ANS—may be a foundational

building block of perception and thought, akin to our basic and

universal representations of color, agency, and objects.
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